

Basecam GPS_IMU serial protocol specification

Hardware: GPS_IMU v.1.x Firmware: 1.x and 2.x

Revision history:

- rev. 0.1 01.03.2019: preliminary version
- rev. 0.2 31.12.2019: minor errors fixed
- rev. 0.3 13.03.2020: add support of GPS_IMU v.1.2
- rev. 0.4 05.11.2020: add support for aborting the calibration process

Overview

Communications is initiated from the remote side (host) by sending *outgoing* commands. The controller may do some action and send response (for the host it is an *incoming* command).

Remote side is responsible for preventing output and input buffers from overflow. For example, if requested too big amount of data that does not fit into the output buffer, the excessive data in response will be skipped. Input and output buffers are 512 bytes size.

Board can work on different serial baud rates, adjustable by the parameters, with the 115200 as default value.

The main set of coordinate systems:

Ground reference frames:

NED (North-East-Down)

- Right-handed, Cartesian, non-inertial
- Geodetic frame with origin located at the surface of Earth (WGS84 ellipsoid)
- Positive N-axis points towards North (tangent to WGS84 ellipsoid), aligned to +X
- Positive E-axis points towards East (tangent to WGS84 ellipsoid), aligned to +Y
- Positive D-axis points down into the ground, completing the right-handed system, aligned to +Z

LLA (Latitude, Longitude, Altitude)

- Non-inertial
- Geodetic frame with origin located at the surface of Earth (WGS84 ellipsoid)
- Latitude is defined as the angle from the equatorial plane to a line normal to the surface of the WGS84 ellipsoid at the location of the vehicle
- Longitude is defined as the east-west angular displacement measured positive to the east from the IERS Reference Meridian to the location of the vehicle

Body reference frames:

XYZ (X, Y, and Z axes labeled on the hardware)

- Left-handed
- Positive right-hand rotation
- Roll angle rotation around the X-axis
- · Pitch angle rotation around the Y-axis
- Yaw (heading) angle rotation around the Z-axis

AHRS (Attitude and heading reference system) format:

QUAT (quaternions (w, x, y, z))

- Body frame to NED frame
- The first term is the scalar value

DCM6 (rotation matrix, direction cosine matrix)

- Body frame to NED frame
- Contains only the first and third rows of the rotation matrix.

• The second row can be calculated as cross-product of the first and third rows of the rotation matrix.

DCM9 (rotation matrix, direction cosine matrix)

- Body frame to NED frame
- Regular form of rotation matrix

Euler angles (1-2-3) (roll, pitch, yaw (heading))

Euler angles (3-2-1) (yaw (heading), pitch, roll)

Message format

Each command consists of the *heade*r and the *body*, both with checksum. Commands with the wrong header or body checksum, or with the body size that differs from expected, should be ignored. Parser should scan incoming datastream for the next start character and try to restore synchronization from it.

Input and output commands have the same format, described below:

	hea	der			bod	y	cro	:16
start character \$ (0x24)	command ID, 0255	payload size N=0255	header checksum	рау	load, vari	iable size	mes chec	
0	1	2	3	4		4+N-1	4+N	4+N+1

Header checksum is calculated as (command ID + payload_size) modulo 256 (operation "modulo" means least significant byte of the sum).

Message checksum is calculated as a CRC16 over the header bytes and payload bytes, starting from index 1 to index 4+N-1. A reference implementation of CRC16 using polynomial 0x8005 is given in the appendix A.

Example messages

CMD_GET_USER_CONF_LOG:

	hea	crc16			
0	1	2	3	4	5
0x24	0x0C	0x00	0x0C	0x60	0x03

CMD_USER_CONF_LOG:

Active channels for STREAM1 (ACTIV_CH_MASK = 0x00000109): 0, 3, 8. Interval between the data samples for STREAM1 (INTERVAL_MS = 0x0064): 100 ms. Active channels for STREAM2 (ACTIV_CH_MASK = 0x00000000): all disabled. Interval between the data samples for STREAM2 (INTERVAL_MS = 0x0064): 100 ms.

	hea	der							pay	load						cro	:16
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
0x24	0x0D	0x0C	0x19	0x09	0x01	0x00	0x00	0x64	0x00	0x00	0x00	0x00	0x00	0x64	0x00	0xD5	0xE8

Data type notation

- 1u 1 byte unsigned
- 1s 1 byte signed
- 2u 2 byte unsigned (little-endian order)
- 2s 2 byte signed (little-endian order)
- 4f float (IEEE-754 standard)
- 4s 4 bytes signed (little-endian order)
- 4u 4 bytes unsigned (little-endian order)
- 8d double (IEEE-754 standard)
- string ASCII character array, first byte is array size
- Nb byte array size N

Commands brief definition

Incoming (from sensor to controller):

Name	ID	
CMD_CONFIRM	1	Confirmation of previous command or finished calibration
CMD_ERROR	14	Error on previous command
CMD_RESET_NOTIFY	3	Notification on device reset
CMD_DEVICE_INFO	5	Board and firmware information
CMD_DATA	8	Configurable realtime data
CMD_USER_CONF_LOG	13	Configuration of user data log
CMD_PARAM_GET	16	Values of the requested system parameter(s)

Outgoing (from controller to sensor):

Name	ID	
CMD_RESET	2	Reset device
CMD_GET_DEVICE_INFO	4	Request board and firmware information
CMD_GET_DATA	6	Request configurable realtime data
CMD_GET_DATA_STREAM	7	Register or update data stream
CMD_CALIB	9	Calibration of the built-in sensors
CMD_BOOT_MODE	10	Enter firmware update mode (STM32 hardware loader)
CMD_USER_DATA_LOG	11	Contains data for logging to SD
CMD_GET_USER_CONF_LOG	12	Request configuration of user data log
CMD_PARAM_GET	16	Query system parameter(s) value
CMD_PARAM_SET	17	Update system parameter(s) value

Incoming commands

CMD_CONFIRM (#1) - confirmation of previous command or finished calibration

Name	Туре	Possible values, remarks
CMD_ID	1u	Command ID to confirm
DATA	2u	DATA depends on command to be confirm

CMD_ERROR (#14) - error on previous command

Name	Туре	Possible values, remarks
CMD_ID	1u	Command ID to report the error
ERR_CODE	1u	1: Wrong parameters
DATA	?	DATA depends on command caused the error, optional

CMD_DEVICE_INFO (#5) – board and firmware information

Name	Туре	Possible values, remarks
HARDWARE_VER	4u	Hardware version. This field includes the two values defined below.
		HARDWARE_VER_MAJOR = (int)(HARDWARE_VER >> 8) HARDWARE_VER_MINOR = (int)(HARDWARE_VER & 0x000000FF)
		The major version number is defined as the position number of a non-zero bit in the HARDWARE_VER_MAJOR.
HARDWARE_CMP	4u	Used as a bitmask for the major part of the HARDWARE_VER field to determine software and hardware compatibility.
		Test Example: HARDWARE_VER & HARDWARE_CMP & 0xFFFFF60
SOFTWARE_VER	2u	Displayed format: x.y, where x = SOFTWARE_VER/100, y = SOFTWARE_VER%100
BUILD_NUMBER	4u	
MCU_SN	12b	MCU ID, unique
DEVICE_ID	9b	Unique Id used to identify each controller in a licensing system
SAT_HW_VER	2u	GPS_IMU Split.Satellite module information.
SAT_SW_VER	2u	Displayed format x.y: where x = value/100, y = value%100
SAT_BUILD_NUM	2u	
RESERVED	1b	

CMD_RESET_NOTIFY (#3) - notification on device reset

Name	Туре	Possible values, remarks
CMD_ID	1u	ID of the command that caused the reset

CMD_DATA (#8) - configurable realtime data

Name	Size	Туре	Bit	Name structure	Units	Possible values, remarks		
FLAGS						ed in this command. Value is copied from the specification for details.		
	4	4u						
FLAGS_EXT		field pr e use.	esent	only if the FLAGS.bit	31 is set.	It extends the possible set of flags. Reserved for		
	4	4u						
TIMESTAMP_MS	Times	stamp						
—	4	4u		Timestamp	ms			
					1	1		
AHRS_STATUS								
			bit0	ATTITUDE_INIT_OK		set if attitude is initialized from accelerometer		
			bit1	HEADING_INIT_OK		set if heading is initialized from the reference sensor (compass or GPS)		
			bit2	HEADING_REF_EN	ABLED	set if heading is referenced by sensor (compass or GPS)		
			bit3			set is GNSS is used in a sensor fusion algorithm		
			bit4			BAD = 0,		
	2	2u	- bit5			COARSE = 1, GOOD = 2, FINE = 3		
			bit6	VIRT_HEAD_SBGC		^{(Virtual heading' mode is enabled for AHRS dat sent to SBGC32 gimbal controller (see CMD_PARAM_SET.FILTER_MODE_FLAGS.Bi 0)}		
			bit7	bit7 VIRT_HEAD_API		⁽ Virtual heading' mode is enabled for Serial API AHRS data (see CMD_PARAM_SET.FILTER_MODE_FLAGS.Bit 1)		
			bit0	TERMOSTAT_TARG	FT	Thermostat has reached the target temperature		
			bit1	RTC_BAT_VALID*		The battery (backup RTC) is installed and not discharged		
			bit2	SD_INSTALLED		SD card is installed and functions correctly		
HW_STATUS			bit3	 GNSS_ERROR		HW error in GNSS subsystem		
	2	2u	bit4	 MAG_ERROR		Magnetometer HW error		
			bit5	 IMU_ERROR		Internal IMU sensor HW error		
			bit6	CALIB_VALID		Factory calibrations Acc and Gyro are valid		
			bit7	LICENSE_VALID		License is valid		
			bit8	EXT_SENS_ERR		External sensor error		
FUSION_QLT	Asse: qualit		t of the		on on a s	scale from 0 to 255. Value of 255 means the best		

		1u	ATTITUDE		Attitude
		1u	MAG		Magnetometer
	5	1u	GNSS		GNSS
		1u	BARO		Barometer
		1u	HEADING		Heading
	Δttitu	de in [DCM6 format.	1	
	Autu	4f	DCM11		
DOMO		4f	DCM12		
DCM6	24	4f	DCM13		
		4f	DCM31		
		4f	DCM32		
		4f	DCM33		
<u> </u>	Attitu	de in c	quaternion format.		
		4f	Q_W		
QUAT		4f	Q_X		
	16	4f	Q_Y		
		4f	 Q_Z		
	Attitu	de in E	Euler angle (3-2-1) format.		·
		4f	YAW	degree	
EULER321	12	4f	PITCH	degree	
		4f	ROLL	degree	
	remo	ved us		ence vect	ence frame. Gravity component has been or estimate. In the stationary case,
ACC_XYZ_LINER		4f	ACCEL_X	<i>m</i> /s^2	
	12	4f	ACCEL_Y	<i>m</i> /s^2	
		4f	ACCEL_Z	<i>m/</i> s^2	
	remo	ved us	leration (without gravity) in N sing the current gravity refere ents on all axes are near zero	ence vect	ence frame. Gravity component has been or estimate. In the stationary case,
ACC_NED_LINER		4f	ACCEL_N	<i>m/</i> s^2	
	12	4f	ACCEL_E	<i>m</i> /s^2	
		4f	ACCEL_D	<i>m/</i> s^2	
	Veloc	ity in 2	XYZ reference frame.		
		4f	VELO_X	m/s	
VELO_XYZ	12	4f	VELO_Y	m/s	
		4f	VELO_Z	m/s	
VELO_NED	Veloc	ity in I	NED reference frame.		
	1000				

	4.5								
12									
	4f	VELO_D	m/s						
Veloc	city un	certainty.							
4	4f	VELO_U	m/s						
Posit	1	1		taken as the origin.					
10									
12	<u> </u>								
	41	POS_D	m						
Posit	ion in	LLA reference frame.							
	8d	POS_LAT	degree	Latitude					
24	8d	POS_LON	degree	Longitude					
	8d	POS_ALT	m	Altitude					
Posit		-	1						
4	4f	POS_U	m						
Meas Norm	sured r alized	nagnetic field in XYZ referen to 1.0 for the Earth's magne	ce frame tic field a	with the hard & soft iron calibration applied. t the place of calibration.					
	4f	MAG_X	relative						
12	4f	MAG_Y	relative						
	4f	MAG_Z	relative						
	Measured magnetic field in NED reference frame. The current AHRS solution is used to map the measurement from the measured XYZ frame to NED frame.								
	/ f	MAG_N	relative						
	41								
12	41 4f	MAG_E	relative						
12		MAG_E MAG_D	relative relative						
Angu	4f 4f lar rat	MAG_D	<i>relative</i> iis measu	rement is compensated by the static (calibration					
Angu	4f 4f lar rat	MAG_D e in XYZ reference frame. Th	<i>relative</i> iis measu	rement is compensated by the static (calibration					
Angu	4f 4f lar rat d in fla	MAG_D e in XYZ reference frame. The sh) and dynamic calibration.	<i>relative</i> iis measu	rement is compensated by the static (calibration					
Angu store	4f 4f lar rat d in fla 4f	MAG_D e in XYZ reference frame. The sh) and dynamic calibration.	<i>relative</i> nis measu rad/s	rement is compensated by the static (calibration					
Angu store 12 Angu store	4f 4f lar rat d in fla 4f 4f 4f lar rat d in fla	MAG_D e in XYZ reference frame. Thesh) and dynamic calibration. GYR_X GYR_Y GYR_Z e in NED reference frame. The	relative nis measu rad/s rad/s rad/s nis measu The curr	urement is compensated by the static (calibration ent attitude solution is used to map the					
Angu store 12 Angu store	4f 4f lar rat d in fla 4f 4f 4f lar rat d in fla	MAG_D e in XYZ reference frame. The sh) and dynamic calibration. GYR_X GYR_Y GYR_Z e in NED reference frame. The sh) and dynamic calibration.	relative nis measu rad/s rad/s rad/s nis measu The curr	urement is compensated by the static (calibration ent attitude solution is used to map the					
Angu store 12 Angu store	4f 4f lar rat d in fla 4f 4f 4f lar rat d in fla sureme	MAG_D e in XYZ reference frame. Thash) and dynamic calibration. GYR_X GYR_Y GYR_Z e in NED reference frame. Thash) and dynamic calibration. ent from the measured XYZ f	relative nis measu rad/s rad/s rad/s nis measu The curr rame to N	urement is compensated by the static (calibration ent attitude solution is used to map the					
Angu store 12 Angu store meas	4f 4f lar rat d in fla 4f 4f lar rat d in fla sureme 4f	MAG_D e in XYZ reference frame. Thesh) and dynamic calibration. GYR_X GYR_Y GYR_Z e in NED reference frame. Thesh) and dynamic calibration. ent from the measured XYZ f	relative nis measu rad/s rad/s rad/s nis measu The curr rame to N rad/s	urement is compensated by the static (calibration ent attitude solution is used to map the					
Angu store 12 Angu store meas 12	4f 4f lar rat d in fla 4f 4f 4f 4f 4f 4f 4f 4f 4f 4f	MAG_D e in XYZ reference frame. Thesh) and dynamic calibration. GYR_X GYR_Y GYR_Z e in NED reference frame. Thesh) and dynamic calibration. and from the measured XYZ for GYR_N GYR_E GYR_D	relative nis measu rad/s rad/s rad/s nis measu The curr rame to N rad/s rad/s rad/s nce frame	urement is compensated by the static (calibration ent attitude solution is used to map the					
	4Posit12Posit24Posit4MeasNorm12Meas	Velocity und 4Velocity und 4Positon in 4Positon in 4124f 4f128d 8d248d 8d248d 8d248d 8d2490siton un 44f 124f 4f 4f124f 4f 4f124f 4f 4fMeasured n 4f 4fMeasured n 4f 4f	12 $4f$ $VELO_E$ 4f $VELO_D$ Velocity uncertainty.44f4f $VELO_U$ Position in NED reference frame. Startin12 $4f$ POS_E4fPOS_E4fPOS_DPosition in LLA reference frame.24 $8d$ POS_LAT24 $8d$ POS_LON8dPOS_LON8dPOS_ALTPosition uncertainty.44f4fPOS_UMeasured magnetic field in XYZ referen Normalized to 1.0 for the Earth's magne 4f12 $4f$ MAG_X124fMAG_ZMeasured magnetic field in NED reference remeasurement from the measured XYZ f	124fVELO_E m/s 4fVELO_D m/s Velocity uncertainty.44fVELO_U44fVELO_U m/s Position in NED reference frame. Starting point is 4f124fPOS_N m 124fPOS_E m 4fPOS_D m 124fPOS_LATdegree248dPOS_LONdegree8dPOS_LONdegree8dPOS_LONdegree8dPOS_LONdegree8dPOS_LONdegree8dPOS_LONdegree8dPOS_LONdegree124fPOS_U m Measured magnetic field in XYZ reference frame Normalized to 1.0 for the Earth's magnetic field an 12 124fMAG_Xrelative124fMAG_Zrelative124fMAG_Zrelative124fMAG_Zrelative					

		4f	ACC_Y	<i>m/</i> s^2	
		4f	ACC_Z	<i>m</i> /s^2	
	static	calibr		ash). The	e. This measurement is compensated by the current attitude solution is used to map the NED frame.
ACC_NED		4f	ACC_N	<i>m</i> /s^2	
	12	4f	ACC_E	<i>m</i> /s^2	
		4f	ACC_D	<i>m/</i> s^2	
	GNS	S state	e solution. Update data rate 2	10 Hz.	
GNSS_STATE	2	1u	GNSS_FIX		0 – no fix, 1 – dead reckoning only, 2 – 2D-fix, 3 – 3D-fix
		1u	GNSS_SAT		The number of tracked GNSS satellites
	GNS	S posi	tion in LLA reference frame.	Update d	ata rate 10 Hz.
		8d	GNSS_LAT	degree	Latitude
GNSS_POS_LLA	24	8d	GNSS_LON	degree	Longitude
		8d	GNSS_ALT	m	Altitude
	GNS	S dilut	ion of precision (DOP). Upda	ate data ra	ate 10 Hz.
		4f	gDOP		Geometric DOP
		4f	pDOP		Position DOP
		4f	tDOP		Time DOP
GNSS_DOP	28	4f	vDOP		Vertical DOP
		4f	hDOP		Horizontal DOP
		4f	nDOP		Northing DOP
		4f	eDOP		Easting DOP
	GNS	S velo	city in NED reference frame.	Update o	data rate 10 Hz.
		4f	GNSS_VEL_N	m/s	
GNSS_VEL_NED	12	4f	GNSS VEL E	m/s	
		4f	GNSS_VEL_D	m/s	
	GNS	S velo	ˈ city uncertainty. Update data	rate 10 F	47
GNSS_VEL_U	4	4f	GNSS_VEL_U	m/s	
	Ahso	lute ai	r pressure.	1	I.
BARO_PRSR	4	4f	BARO_PRSR	kPa	Typical pressure at sea level would be around 101.325 kPa.
BARO_ALT	Baror	netric	altitude.		
	4	4f	BARO_ALT	m	
TEMP_BOARD	Sens	or tem	perature on board		
	00110				

		٨f		6				
		4f 4f	TEMP_BARO	C C				
		41	TEMP_CPU*	C				
AVERAGE_TIME	Precise time interval where data was averaged for this sample (if averaging is enabled by the AVG_MASK).							
	4	4f	AVERAGE_TIME	s				
CALIB_STATUS	Calib	ration	status of main sensors (frw.	ver. 2.02·	+)			
		1u	CALIB_SENSOR		Sensor ID: • 0 – not calibrating, • 1 – accelerometer, • 2 – gyroscope, • 3 - magnetometer			
	3	1u	CALIB_PROGGRESS		Description value: • 0100 – data collection progress, • 101 – Idle, • 102 – wait before start collection, • 105 – pause (wait next action)			
		1u	RESERVED					
PORT_STAT_CUR	Curre	ent ser	ial port statistics (frw. ver. 2.	02+)				
		4u	TX_CNT	,				
		2u	TX_ERR_CNT					
		4u	RX_CNT					
		2u	RX_ERR_CNT					
PORT_STAT_ALL		arial no	ort statistics (frw. ver. 2.02+)		•			
	7 (11 3)	4u	TX_CNT					
		2u	TX_ERR_CNT					
	12	4u	RX CNT					
		2u	RX_ERR_CNT					
UTC_DATE	UTC	1	v:m:d (frw. ver. 2.07)		Τ			
		1u	YEAR		Add 2000 as an offset			
	3	1u	MONTH		In a range 112			
		1u	DAY		In a range 131			
UTC_TIME	UTC	1	:m:s (frw. ver. 2.07)					
		1u	HOUR		In a range 023			
	3	1u	MINUTE		In a range 059			
	1170	1u	SECOND		In a range 059			
TIME_MS		1	nilliseconds (frw. ver. 2.07)					
	2	2u	TIME_MS	4 4070 0	In a range 0999			
UNIX_TIMESTAMP		1		1, 1970 0	0:00:00 UTC (frw. ver. 2.07)			
	4	4u	UNIX_TIMESTAMP					
EXT_SENS_STAT	Exter	Externally connected sensor status (frw. ver. 2.08)						
	4	4u	FLAGS		bit0: ext. gyroscope is enabled bit815: 'missed frames' counter			

					bit1623: 'working range overflow' counter			
EULER_U	Angle	Angles uncertainty in 3-2-1 format						
		2u	ANGLE_U_YAW		Units: 0.000048 rad			
	6	6	2u	ANGLE_U_PITCH				
		2u	ANGLE_U_ROLL					

CMD_USER_CONF_LOG (#13) – configuration of user-defined data enabled for logging

	Name	Ty pe	Bit	Possible values, remarks
STREAM1	ACTIVE_PIPE_MASK	4u	bit0 - bit31	Bitmask of the pipes enabled for logging in this stream, where the bit number corresponds to the index of a pipe. To save bandwidth, send only data of pipes that are enabled.
	INTERVAL_MS	2u		Interval between log events in this stream. Use it for reference only; you can send data with different interval (see CMD_USER_DATA_LOG for details)
STREAM2	ACTIVE_PIPE_MASK	4u	bit0 - bit31	the same as above
12	INTERVAL_MS	2u		the same as above

CMD_PARAM_GET (#16) - receive values of the requested parameters

Name	Туре	Possible values, remarks
NUMBER	1u	Number of variables in the command
ID_1	1u	Parameter ID
VALUE_1	?	Parameter value. Size and type depends on the parameter (see CMD_PARAM_SET definition)
		ID and VALUE for the remaining parameters

Outgoing commands

CMD_GET_DEVICE_INFO (#4) - request board and firmware information

No parameters

CMD_RESET (#2) - reset device

Name	Туре	Possible values, remarks
CONFIRM	1u	0 – no confirmation

		1 - command CMD_RESET_NOTIFY will be sent back for confirmation before device reset
DELAY MS	211	Waits for a given time (in ms) before reset.
	24	

CMD_GET_DATA_STREAM (#7) – register or update *data stream* – a commands sent by the controller with the fixed rate

For each serial interface, only one unique combination of CMD_ID + CONFIG bytes may be registered. If the data stream is already registered, it will be updated. To unregister it, specify INTERVAL_MS=0. The total number of data streams over all serial interfaces is limited to 10.

Take care of the serial bandwidth: if data flow exceeds bandwidth, particular samples may be skipped.

The interval is maintained with the +-1ms tolerance for the individual sample, but the averaged sample rate exactly matches to specified. If the data stream is successfully registered or updated, the CMD_CONFIRM is sent in answer.

All vector-like variables (for example, gyroscope and accelerometer) may be preintegrated to process them at lower data rate without loosing of information. The averaging can be enabled using the AVG_MASK parameter. Averaged values have the same units as the instant values. They can be converted to integrals (*theta_angle, theta_velocity*) by multiplying by the "AVERAGE_TIME" variable.

$$avg(v(t), t, T) = \frac{\int_{t}^{t+T} v(t) \cdot dt}{T}, \sum_{i=0}^{N} T_{i} = t(N)$$

Name	Туре	Possible values, remarks
CMD_ID	1u	Command ID to be sent by this data stream. All supported commands are listed for the "CONFIG" parameter below. If the command is set to 0, all data streams will be disabled.
INTERVAL_MS	2u	Interval between messages, in milliseconds. Send value 0 to unregister data stream.
CONFIG	8b	Bit mask specified in the CMD_GET_DATA FLAGS1 – 4u FLAGS2 – 4u
AVG_MASK	8b	For the bits in mask set to 1, the corresponding data will be averaged on the given time interval INTERVAL_MS. The exact average time for each sample in this data stream can be received in the variable AVERAGE_TIME FLAGS1_AVG - 4u FLAGS2_AVG - 4u
RESERVED	16b	

Name	Туре	Bit		Possible values, remarks
LAGS			escription of the data str ecifies which data set to i	ucture is provided in the CMD_DATA specification. nclude in response:
	4u	bit0	TIMESTAMP_MS	Timestamp
		bit1	AHRS_STATUS	AHRS status
		bit2	HW_STATUS	Hardware status
		bit3	FUSION_QLT	Assessment of the quality of sensor fusion
		bit4	DCM6	Attitude in DCM6 format
		bit5	QUAT	Attitude in quaternion format
		bit6	EULER321	Attitude in Euler angle (3-2-1) format
		bit7	ACCEL_XYZ	Linear acceleration (without gravity) in XYZ reference frame
		bit8	ACCEL_NED	Linear acceleration (without gravity) in NED reference frame
		bit9	VELO_XYZ	Velocity in XYZ reference frame
		bit10	VELO_NED	Velocity in NED reference frame
		bit11	VELO_U	Velocity uncertainty
		bit12	POS_NED	Position in NED reference frame
		bit13	POS_LLA	Position in LLA reference frame
		bit14	POS_U	Position uncertainty
		bit15	MAG_XYZ	Magnetic field in XYZ reference frame
		bit16	MAG_NED	Magnetic field in NED reference frame
		bit17	GYR_XYZ	Angular rate in XYZ reference frame
		bit18	GYR_NED	Angular rate in NED reference frame
		bit19	ACC_XYZ	Acceleration (with gravity) in XYZ reference frame
		bit20	ACC_NED	Acceleration (with gravity) in NED reference frame
		bit21	GNSS_STATE	GNSS state solution
		bit22	GNSS_POS_LLA	GNSS position in LLA reference frame.
		bit23	GNSS_DOP	GNSS dilution of precision (DOP)
		bit24	GNSS_VEL_NED	GNSS velocity in NED reference frame
		bit25	GNSS_VEL_U	GNSS velocity uncertainty
		bit26	BARO_PRSR	Absolute air pressure
		bit27	BARO_ALT	Barometric altitude
		bit28	TEMP_BOARD	Sensor temperature on board
		bit29	AVERAGE_TIME	Time interval for averaging
		bit30	CALIB_STATUS	Sensor calibration status
		bit31	use FLAGS_EXT parameter	
LAGS_EXT		/alue is ture us	-	31 is set. It extends the range of "FLAGS" field and reserved

CMD_GET_DATA (#6) - request configurable realtime data

	4u	bit0	PORT_STAT_CUR	Current serial port statistics
		bit1	PORT_STAT_ALL	All serial port statistics
		bit2	UTC_DATE	
		bit3	UTC_TIME	
		bit4	TIME_MS	
		bit5	UNIX_TIMESTAMP	
		bit6	EXT_SENS_STATUS	Externally connected sensor status flags
		bit7	EULER_U	Euler angles uncertainty (3-2-1 format), in radians
		bit8	RESERVED_DEBUG	For internal debugging, don't use
		bit9	RESERVED	
		bit10	RESERVED	
		bit11	RESERVED	
		bit12	RESERVED	
		bit13	RESERVED	
		bit14	RESERVED	
		bit15	RESERVED	
		bit16	RESERVED	
		bit17	RESERVED	
		bit18	RESERVED	
		bit19	RESERVED	
		bit20	RESERVED	
		bit21	RESERVED	
		bit22	RESERVED	
		bit23	RESERVED	
		bit24	RESERVED	
		bit25	RESERVED	
		bit26	RESERVED	
		bit27	RESERVED	
		bit28	RESERVED	
		bit29	RESERVED	
		bit30	RESERVED	
		bit31	RESERVED	
RESERVED	4b			·

CMD_CALIB (#9) - calibration of the built-in sensor

When the calibration process changes the state, the CMD_CONFIRM (with DATA [1u: SENSOR_TYPE, 1u: CALIB_PHASE]) is sent in response.

CALIB_PHASE: 0 – Successfully started, 1 – Successful completion, 2 – Successful

completion of the stage, 3 - Process aborted

Name	Туре	Possible values, remarks
SENSOR_TYPE	1u	1 – Accelerometer, 2 – Gyroscope, 3 – Magnetometer 4 – External gyroscope <i>frw.ver</i> 2.29+
CALIB_MODE	1u	 0 - Simple, 1 - Precision (Use only on calibration stand) 2 - Abort the process <i>frw.ver</i> 2.02+ 3 - By reference (applicable for SENSOR_TYPE = 4 - External gyroscope) <i>frw.ver</i> 2.29+
CALIB_VALUE	2u	 0 – Start calibration, 0 – End calibration with this value (only precision mode) In the case of gyroscope calibration, the value is defined as angle of rotation with a resolution of 0.1 degrees. In the case of calibration of the accelerometer, the value is defined as linear acceleration with a resolution of 0.01 m/s.
RESERVED	7b	

CMD_BOOT_MODE (#10) – Enter firmware update mode (STM32 hardware loader)

Name	Туре	Possible values, remarks			
CONFIRM	1u	0 – no confirmation 1- command CMD_RESET_NOTIFY will be sent back for confirmation before device reset			
DELAY_MS	2u	Waits for a given time (in ms) before reset and enter firmware update mode			

CMD_USER_DATA_LOG (#11) – Contains data for logging to SD card

Send user-defined data to be logged to SD card, if it is configured and enabled in the "CONF_LOG.INI". Data goes in a pipes, each pipe have its type and number of values, specified in the "PIPE_CONF" field. This configuration should exactly match the pipe configuration in the "CONF_LOG.INI", otherwise data will be skipped.

The PIPES[] array should be ordered by the index of a pipe.

You can send several sets of pipes with different rates in multiple messges, if there are high-rate and low-rate varying data.

Note the logging event is not synchronized with this message - it always use the latestly arrived data, regardless of the rate it comes. You can pass a custom timestamp as a part of user-defined data to have precise time information.

Name	Туре	Bit	Name structure	Possible values, remarks
ACTIVE_PIPE_MA SK	4u	-	(031) corresponds to the inde	ransferred in this message. The index of each bit ex of each pipe; the number of enabled bits f elements in PIPES[] array further in this

	PIPE_CONF	1u	bit0	PIPE_SIZE	Number of values in this channel, 115
PIPES[N]			bit3		
			bit4 - bit5	PIPE_TYPE	Type of values: 0 – reserved, 1 – 4f, 2 – 4s, 3 – 2s,
			bit6 - bit7	RESERVED	
	PIPE_DATA	Variable	Data set defined as an array of values with type (PIPE_TYPE) and size (PIPE_SIZE).		

CMD_GET_USER_CONF_LOG (#12) – request a configuration of user-defined data for logging

No parameters.

The CMD_USER_CONF_LOG is sent in response.

CMD_SET_GNSS_OFFSET (#15) - set GNSS module offset

Set offset of GNSS module if it's located far from the sensor's module

Name	Туре	Possible values, remarks		
OFFSET_XYZ[3]	2s*3	Offset in body XYZ coordinates, mm		

CMD_PARAM_GET (#16) - request value(s) of the system parameters

Name	Туре	Possible values, remarks		
ID_1	1u	Parameter ID (see CMD_PARAM_SET definition)		
ID_N	1u	Parameter ID		

The incoming CMD_PARAM_GET will be sent in response. Each parameter takes 5 bytes (ID + VALUE). Take care about the Serial API command limit. If limit exceeded, the response will be truncated.

CMD_PARAM_SET (#17) – update values of the system parameters

Name	Туре	Possible values, remarks	
NUMBER	1u	Number of the parameters to update	
FLAGS	1u	Bit0: if set, saves the updated values to persistent memory (*.INI files on SD card). Otherwise, they live until the next system reboot. WARNING: if parameters belonging to the same INI file, where changed but not saved, the next command with this flag will save them	

		as well.
ID_1	1u	Parameter ID
VALUE_1	4f 4s	Value of the parameter. For type and size see the chart below
		Remaining parameters

A confirmation CMD_CONFIRM is sent in response.

Definition of the system parameters allowed to change in run-time:

ID	Name in CONF.INI	Туре	Default value	Possible values, remarks
1	FILTER_MODE_FLAGS	4u	0	Bit0: Enable 'Virtual Heading' mode for AHRS data sent to SimpleBGC32 controller ¹⁾ Bit1: Enable 'Virtual Heading' mode for AHRS data in Serial API (quaternions, DCM, Euler angles) ¹⁾ Bit2: Disable magnetometer in a sensor fusion alg ²⁾ Bit35: Disable GNSS ³⁾ 0 – enable GNSS 1 – disable GNSS completely 2 – automatically disable on poor signal quality 3 – automatically disable when no motion is detected (horizontal velocity < ~1.5 m/s) Bit6: Use GNSS for heading corrections (if GNSS is enabled) Bit79: Don't update gyroscope biases for X,Y,Z axes. Use it for a high-end gyroscope with precisely calibrated and stable biases to avoid disturbances from other sensors to confuse it. Bit10: Disable the external gyroscope sensor
2	MAG_AUTO_CALIB2	1u	2	0 – disable 1 – activated by rotation 2 – activated by rotation or rapid changes of magnetic field
3 4 5	EXT_GYR_SCALE_X EXT_GYR_SCALE_Y EXT_GYR_SCALE_Z	4f	1.0	External gyroscope scale factor. Stored to CALIB/EXT_IMU.INI
6	ACC_WEIGHT ⁴⁾	4f	1.0	Accelerometer weight in sensor fusion for attitude corrections (if GNSS is disabled)
7	GNSS_WEIGHT ⁴⁾	4f	1.0	GNSS weight for attitude corrections
8	MAG_WEIGHT ⁴⁾	4f	1.0	Magnetometer weight for heading corrections
9	MAG_DECL_FORCE	4f	0	Magnetic declination in degrees, that replaces the auto-detected value. Stored to CALIB/MAG.INI

¹⁾ In the 'virtual heading' mode the heading angle is not affected by the magnetometer or GNSS corrections. It's free from accidental updates but may drift (i,e, it purely depends on the gyroscope sensor stability and bias calibration). On enable, virtual heading gets its initial value from the normal heading. On disable, heading is instantly jumps back to the fully-fused heading. There is a difference between the virtual heading mode and the mode when Bit2,3 are set (disable MAG & GNSS): the 'virtual heading' filter runs on top of the normal sensor fusion filter, taking all its benefits like compensation for lateral accelerations.

²⁾ Magnetometer is excluded from the heading estimation, though heading may be still updated by GNSS if the system is moving and Bit6 is set. When the magnetometer is enabled back, the filter's output is instantly updated with the magnetometer's readings.

³⁾ It can be used to eliminate GNSS-induced disturbances on the filter in order to have less noise in AHRS

output (attitude and heading). Useful indoors when the GNSS signal is received but is not good, or when the system is used in static conditions (no accelerated motion is expected).

⁴⁾ A relative weight of particular sensor in a sensor fusion algorithm. Value 1.0 corresponds to a factorydefault filter tuning.

Appendix A: Code examples

CRC16 reference implementation in **C**

```
void crc16_update(uint16_t length, uint8_t *data, uint8_t crc[2]) {
    uint16_t counter;
    uint16_t polynom = 0x8005;
    uint16_t crc_register = (uint16_t)crc[0] | ((uint16_t)crc[1] << 8);</pre>
    uint8_t shift_register;
    uint8_t data_bit, crc_bit;
    for (counter = 0; counter < length; counter++) {</pre>
        for (shift_register = 0x01; shift_register > 0x00; shift_register <<= 1) {</pre>
            data_bit = (data[counter] & shift_register) ? 1 : 0;
            crc bit = crc register >> 15;
            crc_register <<= 1;</pre>
            if (data_bit != crc_bit) crc_register ^= polynom;
        }
    }
    crc[0] = crc register;
    crc[1] = (crc_register >> 8);
}
void crc16_calculate(uint16_t length, uint8_t *data, uint8_t crc[2]) {
    crc[0] = 0; crc[1] = 0;
    crc16_update(length, data, crc);
}
```

Command ID definitions

#define CMD CONFIRM 1 #define CMD RESET 2 #define CMD RESET NOTIFY 3 #define CMD_GET_DEVICE_INFO 4 #define CMD_DEVICE_INF0 5 #define CMD_GET_DATA 6 #define CMD_GET_DATA_STREAM 7 #define CMD_DATA 8 #define CMD_CALIB 9 #define CMD_BOOT_MODE 10 #define CMD USER DATA LOG 11 #define CMD_GET_USER_CONF_LOG 12 #define CMD USER CONF LOG 13 #define CMD ERROR 14 #define CMD SET GNSS OFFSET 15 #define CMD_PARAM_GET 16 #define CMD_PARAM_GET 17